Digital dentistry in daily practice

Dr Edouard Lanoiselée, France

How can a patient’s treatment be optimised? How can both speed and efficiency be increased without sacrificing quality? These questions are constantly being asked in our practices. Our patients’ demands are becoming increasingly advanced in terms of aesthetic and functional results, yet they have ever less time to dedicate to treatments. We now have a great deal of equipment at our disposal that enables this optimisation. Many of these tools are digital and as such allow us to digitise our patient files in order to transfer as much information as possible to the prosthetic laboratory. This information can thus be prioritised and streamlined to be processed in the laboratory by the appropriate people in the respective field (modelling, ceramic coating, etc.). In this effort to centralise information, colour is a complex area that requires extensive resources in terms of information. It is usually assessed in the chair by means of comparison of the patient’s teeth to one or more shade guides. This reading is influenced by many factors, and results can be significantly affected by surrounding interference (brightness of the room, bright colour of lipstick, etc.), making it particularly subjective.1, 2

Dental photography is now considered an excellent way to convey colour information. It requires the prosthodontist to use a shade guide as a reference to ensure that the information is as objective as possible. Working with dental photography, however, increases working time, as the prosthodontist has to perform map-
ping based on the information obtained from the photographs. Moreover, cameras are sensitive to shade variations, depending on the colour temperatures predetermined by the camera, which can skew this reading. To counter this problem, spectrophotometers are currently the best tools we have to objectify a result. They work by emitting calibrated light which, depending on the reflection registered, enables a colour reading to be taken. This reading is unaffected by environmental factors that could potentially skew its results (lipstick, colourful clothing, unsuitable lights, etc.).

Some models allow a photograph to be taken with mapping of the tooth, which enables the prosthodontist to be guided more effectively in the process of creating the prosthesis. The sheet is then stored on the software and can be processed and archived in a patient file. The Rayplicker (Borea) is a device that allows the practitioner to record all the information collected and communicate it to the prosthetic laboratory. The laboratory sheet can be sent via a secure portal and reprocessed by the prosthetic laboratory. This flow enables the form to be marked as reviewed by the laboratory, in order to monitor the progress of the treatment from the practice. Most shade guides on the market are referenced, making the work easier for the laboratory.

Clinical case

The patient attended the practice for replacement of the restoration on tooth #23, which she found unsightly. The clinical examination revealed the presence of a composite restoration on the vestibular surface of tooth #23 with a stained joint, as well as the presence of early carious lesions on the neighbouring teeth (Figs. 1 & 2). After discussing treatment options with the patient, it was decided on composite restorations for the carious lesion and a veneer for tooth #23. However, there was a constraint that made this case more difficult: the patient had to go abroad for three months and needed the work to be done within ten days of accepting the treatment.

The first step in the treatment was registering the colour, performed using the Rayplicker. A reading was taken of the tooth to be restored and of the contralateral tooth (Figs. 3 & 4). This double reading would give the prosthetist information not only on the tooth to be restored but also on the overall integration of this tooth. The readings were sent to the laboratory via a secure server. The important information for creating the restoration is centralised on this sheet: translucency, detailed mass mapping and the shade guide values (Fig. 5).

As the treatment did not require any modification of shape, it was decided to use the initial situation as a reference for the laboratory, and an optical impression was taken, which would guide the laboratory in the design of the veneer (Fig. 6). A reduction guide was then made with silicone and the tooth was prepared (Fig. 7). The thickness would be checked at the end of preparation with this key, which enables the ceramic thickness, the homogeneity and the homothety of the preparation to be checked.
The optical impression of the preparation was then performed (Fig. 8). To do this, tooth #23 was erased on the initial impression and then the area was registered. This would enable the impressions to be merged easily in the laboratory to control the modelling process. All the information was then sent to the laboratory (shade sheet and optical impression). In both cases, the files were sent via a secure portal with the option of verifying receipt by the dental surgeon. The veneer was then modelled in the Dental System software (3Shape; Fig. 9) and then printed in burnout resin on a 3D printer. It was then processed conventionally using the pressed ceramic technique, as the fineness of the veneer is not easily compatible with a machining technique (Fig. 10).

After curettage and sealing of the lesion on tooth #22, the veneer was placed with a try-in paste (Fig. 11). The patient confirmed the result, and then the veneer was glued on to the tooth. Only light-polymerised glue (G-CEM veneer, GC) is used for this—the advantage of this type of glue is the longer working time and therefore the management of excess glue, which is easier to remove. After thorough polishing, the dental dam was removed and a final polish was performed (Fig. 12).

The patient was seen again at four months, when she returned from abroad for a check-up. The teeth were rehydrated and the periodontal tissue that had been pushed in when the dam was put in place had resumed its original position (Fig. 13). It was evident that the restoration had integrated well.

The use of digital techniques means that it is now possible to create simple and reproducible protocols. If the practitioner or prosthodontist encounters difficulties, these can be analysed and resolved quickly. While shape can now easily be checked by the practitioner, colour is one of the crucial points to master during procedures. Spectrophotometers such as the Rayplicker now offer a simple, fast and effective solution. The secure platform facilitates interaction between the practice and the prosthetic laboratory, as well as confirms receipt of documents, centralises information and provides the option of enhancing the content with photographs clarifying the surface qualities and characterisations required for the integration of the prosthesis. All these elements combined deliver qualitative and rapid results in line with patients’ expectations.

Editorial note: A list of references is available from the publisher.

Fig. 14: Spectrophotometer Rayplicker developed by BOREA.

Dr Edouard Lanoiselée graduated from the Faculty of Dentistry of the University of Nantes in France and later obtained a master’s degree in medical sciences. He worked as a university hospital assistant at the teaching and research centre of the Nantes university hospital in the prosthetic department. He is the coordinator of the aesthetic dental restoration university degree at the University of Nantes and a consultant to the implantology department of Nantes university hospital. Dr Lanoiselée is a CAD/CAM specialist and a partner at a general dental practice in Nizay in France.